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Abstract—The analysis of a Shanley column is first presented, in order to illustrate the role of rate
dependence in the uniqueness of and stability conditions for the solution of the discrete system.
Stability conditions for the solution of boundary-value problems for rate-dependent solids are then
considered. and a weak formulation of the linear stability criterion is presented. This formulation
is well-suited for obtaining solutions to both the instability modes and the corresponding critical
loads in systems with a finite number of degrees of freedom, typically obtained by discretization of
the continuum. As an application, a stability analysis by the finite-elcment method of a von Mises
solid under plane strain tensile loading is presented. The influence of both the rate sensitivity and
the wavelength of the mode of perturbation on the subsequent localization of the deformation in
shear bands is discussed.

1. INTRODUCTION

Localization of the deformation is a characteristic feature of inclastic deformation and has
been studied extensively for rate-independent solids within the context of bifurcation theory.
The onsct of localization can be characterized by different modes of bifurcation such as
necking modes (Hill and Hutchinson, 1975), surface wave modes (Triantafyllidis, 1980) or
bands of intense shearing (Rice, 1976 ; Hutchinson and Tvergaard, 1981). Bifurcation is
understood in this paper as a loss of uniqueness in the solution of the incremental governing
cquations. Loss of uniqueness, which is ecither associated with or can be followed by a
change in character of the governing equations, is responsible for standard boundary-value
prablems becoming ill-posed. For example, within the theoretical framework of Hadamard
(1903), the initiation of shear banding under quasi-static conditions is signalled by a loss
of ellipticity and the characteristics of the hyperbolic system define the orientation of the
shear bands.

For rate-dependent solids, conditions for the uniqueness and the existence of the
solution of incremental governing equations have been studied by Mandel (1971). An
example of interest is the case of materials that exhibit no instantaneous permanent defor-
mation and for which the elastic component of the constitutive model solely controls
conditions for uniqueness. In general, for stress levels that remain small compared with the
elastic stiffnesses, uniqueness in the solution of the incremental governing equations is
guaranteced. Boundary-value problems then remain well-posed and bifurcation is precluded
in the loading range for which localization phenomena are observed (Needleman, 1988).
Changes in the mode of deformation, which typically precede a localization of the defor-
mation, can be detected by a lincar stability analysis. A solution is said to be unstable if
the analysis reveals the growth of a potential infinitesimal perturbation,

Localization phenomena in strain-rate-dependent materials are well illustrated in the
experimental work of Marchand and Dufly (1988), in which the dynamic loading of a thin-
walled cylinder in a torsional Kolsky bar results in shear banding. A simple equivalent
model problem could be one characterized initially by homogeneous deformation in simple
shear. The deformation ceases to be homogeneous at some point of the loading owing to
the growth of a small perturbation. The final localization in a narrow band of intense
shearing is characterized by an unbounded growth of the initially small perturbation. The
stability of the homogeneous mode of deformation in simple shear was first analysed by
Clifton (1978) and Bai (1982), accounting for temperature effects and considering linear
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perturbation methods. An extension of these studies to three dimensions was proposed by
Anand et al. (1987).

Stability analyses based on linear perturbation methods aim at predicting the initial
evolution of the perturbations and usually fail to reveal the long-term evolution during
which localization could take place. Localization is detected when the rate of growth of the
perturbation becomes large compared with the variation of the fundamental solution, which
isdisregarded in a linear analysis. A localization criterion necessitates a relative perturbation
analysis, such as can be found in the work of Molinari and Clifton (1987).

The two concepts of uniqueness and stability are first discussed in this paper in the
context of the analysis of a discrete system with two degrees of freedom, the Shanley
column. The supports of the column are considered to have an elastic—viscoplastic response.
Whereas uniqueness in the solution of the incremental governing equations for a perfect
column is lost at the Euler buckling load under quasi-static conditions, the onset of an
unstable behaviour is observed for a lower load level. More precisely, buckling initiates for
a critical load governed by the tangent modulus that characterizes the limit of inviscid
plastic flow. An analogous approach to stability for rate-dependent solids is then considered,
and a weak formulation of the linear stability criterion is presented. The aim here is to find
both the stability threshold and the associated mode for systems with a finite number of
degreces of freedom. These systems are typically obtained by discretization of the continuum.
As an application, the stability analysis by the finite-element method of a von Mises solid
under plane strain tensile loading is presented. The modes of bifurcation for the rate-
independent solid are known to be of the wave or shear-band mode (Hill and Hutchinson.
1975) and correspond to the modes of instability of the rate-dependent solid. The final
failurc mechanism is onc of shear banding. Both the influence of the rate sensitivity and
the perturbation wavelength on the development and the final position of the shear bands
on the specimen are discussed. A convergence analysis shows the sensitivity of the simulation
of the localization phenomenon to the mesh size.

2. STABILITY ANALYSIS OF A SHANLEY COLUMN

In this section, the stability analysis of a Shanley column with elastic-viscoplastic
response is presented. The development of the rotation during the buckling of the slender
column is a typical example of the growth of an infinitesimal perturbation in the principal
mode of deformation, defined here by the loading of a straight column that remains untilied.
The analysis of this discrete system will shed light on the analysis of analogous continuous
systems and thus offers an ideal opportunity to review classical results on uniqueness within
a simple framework.

Models of slender column analogous to the one treated here and presented in Figs la
and 1b have been studied repeatedly in the literature, starting with Shanley’s (1947) suc-
cessful attempt to reconcile buckling load predictions based on tangent modulus and
reduced modulus. A complete analysis of the elastoplastic column using static perturbation
techniques was presented by Sewell (1965). Within the framework of standard systems,
Nguyen (1984) re-examined the stability and the bifurcation criteria for the same structure.
The sensitivity to imperfections of the post-buckling responsc of a similar elastoplastic
column was investigated by Hutchinson (1972). For stability analyses of viscoplastic
columns, one should mention the contributions of Rabotnov and Shesterikov (1957) and
Hoff (1958) in the special context of creep buckling. In these last two works, the stability
analysis is carried out on the dynamic system of a prestressed column subjected to a
perturbing impulse. Owing to the non-linear material response, such an impulse results in
the initiation of buckling beyond a critical time, which defines the stability threshold. In
this paper the approach to column stability is different. The impulse type of analysis is
replaced by classical linear perturbation techniques. Furthermore, an elastic-viscoplastic
constitutive model is considered for the column supports. This choice permits a comparison
with rate-independent behaviour in the limit of inviscid plastic low.
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Fig. 1. Geometry and free body diagram of the Shanley columan.

2.1. Governing equations and uniqueness conditions
The equations of motion for the rigid rod model presented in Fig. I are:

F1+F1—P = ”lﬁc
(F\~Fy))I+PLO =10, ()

where m is the total mass of the column, ug the vertical displacement of the centre of gravity
and 7 the moment of inertia with respect to the centre of rotation. The forces F, and F, are
associated with the generalized springs labelled 1 and 2 on Fig. 1, and P is the applied load
on the top of the column, labelled 3. The compatibility equations relate the displacement
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of each support to the two degrees of freedom of the system, the vertical displacement u of
the constrained centre and the rotation 8:

u, =u+l8, =12 2)

In this equation, /, is the distance from support a to the centre of rotation: [, = (~{, +/).
As a convention in this section, there is no summation over repeated Greek subscripts,
which range from 1 to 2. The vertical displacement of the centre of gravity is expressed as
a convex combination of the displacement u of the column centre and the top displacement
us:

to = (1=Bu+fus = ut B2 0%, Belo:1) 3

Note that the coefficient § will have no influence on the results to be presented in this
section,

We now consider a class of elastic-viscoplastic constitutive models for the supports,
described by the following set of equations:

F, = E(i,—uf)
(b(Fz' F(h)

0 o= if F, 2 Fy,. zcrootherwise
y

Fo, = Fo(i). 4)

The permanent displacement rate of each support is denoted by 4f, while £, n and Fy (1)
are respectively the clastic stifTness, a viscosity, and a hardening function of the accumulated
permanent displacement. The function ¢ characterizes a general viscosity law with the only
restriction that this function is zero for F, less than F,, corresponding in this range to an
clastic response of the supports.

The boundary conditions at the top of the column can be specified in terms of cither
force or displacement :

Uy =R+%02 = 6(1)
P = P(1). (5)

Note that in cgns (1)-(3) and (5) the rotation 0 of the column is assumed to remain small
throughout the analysis. A solution to the set of eqns (1)-(4) together with either (5a) or
{5b) can be obtained, and at any time the state of the column is characterized by the set of
variables (F,, P, u, £, ug, 0). In particular, we shall call the fundamental or principal
solution of this problem the path corresponding to an initially straight column that remains
untilted : (F2, P, u°, uf®, ud, 0).

Considering now the uniqueness of this principal solution, we follow the standard
approach and allow for the possibility of having a second family of incremental variables
(F,, P, u, 12, ug, 0) satisfying governing equations and boundary conditions, and which
differs from the incremental fundamental solution. The difference between the two familics
of incremental solutions is denoted by A. From the constitutive equations (4) it is seen that
the permanent displacement rates 4 depend only on the current values of F, and F,, and
that consequently the traction and displacement rate differences are simply related by the
elastic modulus:
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AF, = EAu,. (6)

By inserting (6) in the rate form of the governing eqns (1)—(3), the uniqueness problem for
the rotation is found to be governed by the single equation:

(P(t)L—2E)A6—IAG = 0. W)

In the absence of inertia, it can be concluded from (7) that a loss of uniqueness is associated
withthe Euler buckling load Pg = 2E/*/L. Under dynamic conditions, the result is different.
Solutions of (7) can be approximated, on a time interval that is small compared with the
rate of loading, by trigonometric functions for applied loads below the Euler load and by
hyperbolic functions otherwise. Furthermore, uniqueness of the solution of (7) can be
proved by applying the Lipschitz condition (Coddington and Levinson, 1955) to the system
of two first-order equations with the unknowns (Ad, Af) obtained from (7). Consequently,
if uniqueness is ensured initially [(A§, A9)|,., = (0,0)], then by continuity requirement this
initial trivial solution remains the only admissible solution at any time. The introduction
of inertia terms ensures uniqueness of the solution of the incremental governing equations
beyond the Euler load.

We may conciude from this analysis that the Shanley column problem is well-posed
up to the Euler load under quasi-static conditions and that it remains so for any load level,
il inertia is taken into account. We must now answer the question of whether or not the
unique solution along the fundamental path will exist physically. To determine the physical
existence of the solution, a stability analysis is required.

2.2, Stability analysis

To investigate the asymptotic stability in the Lyapunov sense (Coddington and Levin-
son, 1955; Arnold, 1973) of the principal solution, we now assume that at a given time
there exist solutions, called perturbed solutions, in the ncighborhood of the fundamental
solution. Stability is guaranteed as long as the distance between any such admissible
perturbed solution and the fundamental one is found to vanish with time, for some appro-
priate definition of a distance,

The existence of perturbed solutions neighbouring the principal solution is first
explored by considering solution at time t = ¢+ A, for Ar small compared to unity, of the
type:

A(t) = A%(t) +edA(r) with e« 1, 8)

where 4 is generic for all ficld quantities (F,, P, u, u, ug, 0) and A%(t) characterizes the
principal solution at time 1. For such a perturbed state to be admissible, it has to satisfy
the ficld eqns (1)—(4) and the boundary condition (5a) or (5b). Substitution of (8) in these
equations results in two problems of different order. The zero-order problem describes the
principal solution at time t and does not yield any information concerning the perturbations.
The first-order problem, however, yiclds the following system :

OF (1) + 0Fy(1) — 0 P(x) = mdii(z)

(OF (1) = 8F () + P°(2) Lo0O(z) = I50(r)
ou,(t) = du(t)+1,00(t)

OF, (1) = E(éu (t) — 04l (1))

nout = 61"( )+ g 51",,,(1’)

oF,

0F o (1) = Fo()|°0ud, ®

together with the boundary condition :
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du(t) =0 or OP(r)=0. (10)

Note that the trivial first-order relation obtained from (3) has been introduced directly into
(9a). The following separation of variables is now proposed for solving the first-order
problem:

SA(t) = 64 exp (A1), (n

where the parameter 1 is the initial rate of growth of the perturbations and 64 a scalar
quantity that will remain undetermined in this linear stability analysis. This type of solution
should yield an accurate estimate of the evolution of the perturbation over a time interval
for which the rate of change of the perturbation is large compared with the variations in
(9) of the coefficients determined by the principal solution. If a solution of (9)-(10) with
structure (11) can be found such that the rate A is positive, then a perturbation can
grow. Alternatively, if the satisfaction of (9)-(10) requires negative rates of growth, the
perturbation is decaying in time and initiation of buckling is precluded at time <.

The limiting process of At tending to zero is now considered and the first-order problem
is solved for a solution having the structure defined in (11). As a first step, a relation between
the perturbations in force and displacement is derived from (9d)-(9f) :

OF, = E,(A)dd,

0

d¢
aF,
E(A)=F [ A el I (12)

d¢ , 0
=, ri)

The modulus £,(4) is a function of material parameters, the current state of deformation
on the principal branch and the rate of growth of the perturbation. Note that it is not
associated with the instantancous response of the column, unlike the modulus found during
the preceding uniquencss analysis. The original system (9) can now be further reduced to:

[E,(2) + E5(2) —mA2)0u = 6P
[P~ T(E (W) + EL (M) - 142160 = 0, (13)

together with i = 0 or 32 = 0 from the boundary conditions. Since we have considered
an initially perfect structure, the two supports have experienced the same deformation up
to time t and their moduli arc thus identical and are denoted from now on by £(1). At time
7, a neeessary condition for the existence of a non-trivial solution in terms of a perturbation
in the angular position of the column reads:

Po(1) = 2%J(A)+ {-J.’. (14)

Note that this result is independent of the choice of type of boundary condition. Equations
(12b) and (14) define a one-to-one relation between the load carricd by the column and the
initial rate of growth of the instability. If, for a given load, the rate 4 is found to be positive,
then the principal solution is said to be unstable and buckling is possible.

We now analyse stability criterion (14), disregarding the contribution of inertia for the
time being. From a consideration of the limit of infinite initial rate of growth (4 — o) for
the perturbations, it can be seen from (12b) that the modulus & tends to the elastic stiffness
E and that the corresponding critical load defined in (14) approaches the Euler buckling
load. This result indicates that whereas a loss of uniqueness is not possible before the Euler
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load is reached, this load level is not attainable followifig the principal branch owing to the
highly unstable character of this loading path. It is of more interest to determine the
instability threshold corresponding to the first positive rate of growth (1 — 0*). Note that,
to remain within the domain of validity of the linear stability analysis with a solution having
the structure (11), this process requires that a vanishing loading rate be considered as well.
From (12b), it follows that the first instability corresponds to the modulus:

0

o

oF,
S+=E |1 -E——"7t1. (15)

o 0
(EE.: "m)

Interestingly enough, the same modulus is obtained from (12b) if the limit of inviscid plastic
flow is considered (7 — 0). In this limit of inviscid plastic fiow, the constitutive model (3)
yields a rate-independent model in which the viscosity law is replaced by the yield criterion:
¢(F,, Fy,) = 0. The modulus & pertinent to the instability threshold represents the tangent
modulus of this rate-independent model. The critical load for the first instability is associated
with the tangent modulus and naturally yields a lower bound for all possible buckling loads.

To complete this discussion of criterion (14), we note the stabilizing effect of inertia.
At any given load level, the rate of growth is lowered when inertia is accounted for. At the
Euler load. for example, the rate of growth is found to be infinite under quasi-static
conditions and bounded if inertia terms are introduced.

At this point, it is of intcrest to compare further the results of the lincar stability
analysis with the bifurcation analysis of the rate-independent column. This comparison is
valid when the limit of inviscid plastic flow is considered in the preceding analysis. The
explicit introduction of time in the viscoplastic model enables onc to quantify the unstable
character of the principal branch by assigning to every load a characteristic rate of growth
of the perturbation. A further advantage of introducing viscosity cflects lies in the choice
of the modutus during the stability analysis. For rate-independent models and within the
plastic regime, two possible moduli are always present, these corresponding to the elastic
and to the plastic branches of the plasticity model. Hence it is always necessary to decide
which modulus is most appropriate to the bifurcation analysis. The introduction of a small
but finite viscosity obviates this discussion altogether. If plastic flow is taking place at time ¢,
then the viscosity effects ensure the existence of a finite time interval during which plastic
flow will continue even if the loading on onc of the supports is reversed. This determines
uniquely the modulus pertinent to the first instability as being the tangent modulus. This
feature of the stability analysis of the rate-dependent system could explain the different
result of the stability analysis of the clastoplastic column, corresponding to the singular limit
of (n = 0), for which the stability threshold is found to be associated with the reduced
modulus (Nguyen, 1984). As a consequence, the path on the principal branch beyond the
first bifurcation point, corresponding to the tangent modulus, is found to be initially stable.
This difference between bifurcation and stability is a rather common aspect of elastoplastic
models.

2.3. Development of the instability

In the preceding section, the existence of admissible solutions neighbouring the fun-
damental one was established. Every load beyond the critical load based on the tangent
modulus was found to correspond to a perturbation with a positive initial rate of growth
A. We now intend to explore the evolution of these perturbed solutions. If growth is
observed, then the loss of stability predicted by the linear analysis is confirmed and buckling
is taking place. This post-buckling analysis is conducted numerically in the spirit of the
finite-element analysis presented in the last section of this paper.

We consider a constitutive model similar to (4) with the following particular choice of
a linear overstress viscosity law and linear hardening function :
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_F,“'Foa

w for F, 2 F,,, zerootherwise

Fop = F,(1+h&), (16)

where F, is the initial yield strength of a support and 4 is a hardening parameter. Values of
10-* N and 10’ m~" were chosen for these two quantities, while the geometry of the column
was defined by assigning a value of 1m and 4x 10~*m to L and /. For this choice of
material and geometrical parameters, relation (14) between the rate of growth of the
perturbation and the load carried by the column under quasi-static conditions takes the
form shown in Fig. 2 for various values of viscosity. Note that all curves start from the
same critical load determined by the tangent modulus &+, and tend towards the Euler load
as 4 increases to infinity. For boundary condition (5a), the displacement at the top of the
columan is defined as a linear function of time: J(s) = &r, with #set to 10" "ms™! in this
analysis.

Quasi-static conditions are assumed and an implicit numerical scheme is chosen to
solve the governing eqns (1)~(4). For the critical load corresponding to a selected rate of
growth, the system is perturbed by assigning a small non-zero value A, to the first iteration
of the next incremental rotation. Figure 3 presents the history of the computed load
normalized by the elastic buckling load versus a dimensionless time, normalized by the
relaxation time fy defined as 7q = n/E. The instant at which the system is perturbed is
marked by a solid point. The corresponding evolution of the angle @ is presented in Fig. 4.
These figures show very clearly that there is a latency between the instant of perturbation
and the first appearance of a significant deviation from the fundamental path. This delay

L.
Pe
1-!

0.75 ]

0.50
vanishing viscosity

R

025 -

Q Y T T )
0 0.125 0.250 0.375 0.500

A

Fig. 2. Relation between the load and the initial rate of growth of the perturbation for the
fundamental solution. Various choices of viscosity # are considered in the quasi-static case.
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Fig. 3. Evolution of the load with time including the post-buckling regime. The analysis is performed
for three ditferent predefined rates of growth 4 and the points signal the instants of perturbation,

becomes shorter for larger values of A. After this initial period, buckling is characterized
by a loss of bearing capacity of the column followed by a stabilization at a lower level. The
computed column response shows the limitation of any linearized theory for predicting the
long-term evolution of the perturbed system. A similar observation has already been made
by Hoff (1958) in the context of creep buckling.

To compare the evolution of the solutions in the post-buckling regime with the pre-
diction of the lincar analysis, we now focus on the initial growth of the instability. The
evolution of the rotation 0 up to 50 times the magnitude of the perturbation A0, is shown
in Fig. 5 for various rates 4. The initial jump in & from the horizontal axis marks the first
equilibrium point away from the principal branch after perturbation. The lincar stability
analysis predicts a rate of growth at the time of perturbation of 150. By analogy, we can
estimatc that in this numerical analysis the initial rate of growth should be of the order of
AA0,, where Af, is the rotation found at the end of the first increment when equilibrium
has been restored after n iterations. These estimates, corresponding to the dashed lines in
Fig. 5, are found to be rather representative of the initial angular response, but again are
unable to represent the longer-term evolution. Although the role of the parameter 4 has
been already established, this linear analysis cannot shed any light on the role of the
magnitude of the perturbation 0. From the structure of the solutions (11), it is apparent
that 66 contributes to the initial rate of growth of the perturbation for non-vanishing rates
A. A question to be considered at this point is whether the initial guess A8, introduced at
the time of perturbation plays the same role in the numerical analysis. To assess the
sensitivity of the post-buckling analysis to this parameter, numerical tests were performed
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Fig. 4. Evolution of the angular position of the column # with respect to time for three different
perturbations marked by solid points.

for initial perturbations A0, of 10 7 and below, and for a rate 4 of the order of the rate of
loading /L of 10 7 s "', No influence of A0, on the evolution of the angle 0 and the load
P was detectable after a few increments. This result is certainly due to the choice of an
implicit scheme. The final incremental value of the rotation is independent of the initial
perturbation as long as this first guess remains within the range of convergence of the
iterative scheme.

Finally, a comparison with the rate-independent solution is found useful for explaining
a second stage in the development of the instability. An expression for the P~0 relation in
the initial post-buckling regime of the rate-independent Shanley column can be found in
the work of Sewell (1965). This relation is plotted in Fig. 6 for the earliest possible
bifurcation load defined by the tangent modulus. This plot shows a continuous increase in
load that is fully controlled by the boundary conditions. The rate-dependent response is
presented in the same figure for a range of values of viscosity. To retain the full validity of
the linear analysis, the system has been perturbed for rate A of the order of the rate of
loading &/L. For vanishing viscosity, the corresponding critical load thus tends rapidly to
the bifurcation load of the rate-independent model. Observe from Fig. 6 that for decreasing
viscosity the rate-dependent response converges to the rate-independent solution. Fur-
thermore, the latency between the instant of perturbation and the real development of
buckling is found to be greatly reduced as the rate-independent limit is approachced. If
viscosity effects are only marginal, which is not the case for creep buckling (Rabotnov and
Shesterikov, 1957 ; Hoff, 1958), the predictions of a linear stability analysis can lead to an
accurate estimate of the critical load at which buckling become significant. These results
are in agreement with the imperfection analysis of Tvergaard (1985) for stiffened plates.
Another consequence of the analogous post-buckling response of the rate-independent and
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Fig. 5. Close-up of the initial evolution of the angle 0 after perturbation of the principal solution,
for three different predefined rates of growth 4. The dashed lines represent the predictions of the
lincar perturbation analysis.

rate-dependent columns is that the growth of the perturbation, predicted to be of an
exponential type, must remain bounded and finally determined by the boundary conditions
in a later stage of the buckling. This behaviour can be observed from Fig. 7, in which the
normalized rotation rate is plotted versus a dimensionless time. Loss of stability of the
principal solution of the Shanley column does not lead dircctly to catastrophic failure of
the structure.

3. STABILITY ANALYSIS OF RATE-DEPENDENT SOLIDS

In this section, we wish to broaden the concepts used for the stability analysis of a
Shanley column and consider an analogous approach to boundary value problems for rate-
dependent solids. A particular emphasis is given to systems with a finite number of degrees
of frecedom obtained by discretization of the continuum.

The questions of cxistence and uniqueness of the solution of boundary value problems
for rate-dependent solids have been dealt with by Mandel (1971). In particular, the class
of materials characterized by no instantancous permancnt deformation is found to be
cquivalent to linear elastic solids for the discussion of existence and uniqueness. Uniqueness
is thus guaranteed when the elastic moduli do not decrease, as a result of, for example,
accumulated damage, or for stress levels that remain small compared with these moduli.
Of interest here is the stability of this otherwise unique solution. Analysis of loss of stability
in shear-band or necking modes has been conducted in the past for simple geometries and
matcrial responses (Hutchinson and Obrecht, 1977 ; Clifton, 1978). In contrast, the analysis
to be presented here does not require prior knowledge of the instability modcs and is aimed
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Fig. 6, Load versus rotation of the column, bused on the instability threshold. As the viscosity
vanishes, the column response tends to the rate-independent solution represented by the dashed
cusve.

at a general class of material behaviour and an arbitrary domain geometry. To achieve this
result, the first step of this section is to introduce a weak formulation of the linear stability
criterion. It is then possible to scarch for the mode of instability and the associated critical
load for an equivalent system with a finite number of degrees of freedom, obtained by
discretizing the continuum,

Let Q denote a region with boundary I' and occupied by a rate-dependent sohid. The
equations of motion over this domain are :

GUJ.”pb’ = pl‘i( in Q. (17)

where o;;, p, b, and & arc respectively the Cauchy stress tensor, the mass density of the
material, the body forces vector and the acceleration vector.

We now select a phenomenological constitutive model with no instantaneous per-
manent deformation, which is appropriate for solids whose main deformation mechanism
is dislocation motion (Rice, 1970). Morc general formulations for clastic-viscoplastic
solids can be found in the work of Lubliner {1964) and Mandel (1971). Although a particular
choice of formulation has some influence on conditions for uniqueness, it has no bearing
on the generality of the stability analysis presented here. The material behaviour considered
is described by the following set of equations:

6y = DiglEy—7r)

J
ry = 5;;(0,‘1)
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Fig. 7. Evolution of the rotation rate ¢ with time for various values of the viscosity . The initial
sharp increase remains bounded and the angular evolution is finally controlled by the boundary
conditions.

¥ = :I ¢(o,q)
4, = ¥h,(a.q), (18)

where D5, are the clastic moduli, £, the rates of deformation, r,, the flow directions based
on a potential ¢ and q is a family of internal variables. The effective strain rate y is defined
by a viscosity law ¢(e, q) and the viscosity n. It is assumed here that the function ¢ is zero
in some elastic domain defined by & and q. The fact that the effective plastic strain rate y is
not a function of any rate quantities but is a function only of the stress tensor ¢ and the
collection of internal variables q, which characterize the current state, is responsible for the
instantancous response being purely clastic. The last equation in (18) represents an evolution
equation for the internal variables with the restrictive hypothesis that this evolution is
controlled by plastic straining alone.

For simplicity in this presentation, the strain-displacement compatibility equations are
written within a small strain approximation:

E; = %(“i./*’“u)- (19

The absence of non-linear terms in (19) precludes a certain class of instabilities from this
analysis but does not affect is generality.
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To complete the set-up of the problem, consider the following mixed-boundary con-
ditions:

0,»/»1!, = {-‘ on r,

u,'=a,‘ on r,,

with nll,=@ and L,ul,=T. (20)

The solution of the governing equations and boundary conditions (17)-(20) is called the
principal solution of the problem and is denoted by the superscript ( )°. As already
mentioned, constant moduli Df, guarantee uniqueness of the solution for stress levels that
remain small compared with these moduli and bifurcation is thus precluded. We now study
the stability of this principal solution and consider perturbed solutions of the following
type at time 7 = ¢+ At for As small compared with unity:

A(x, 1) = A°(x, 1) +e0A(x, 1) with g« . (2!

The function A(x,1) is generic for all field quantities and 64 denotes a perturbation
added to the principal mode 4°%(x, t). Unlike the discrete case of the Shanley column, the
perturbations now have spatial variations which are additional unknowns in this problem.
Such perturbations arc admissible at time v if they satisfy the appropriate ficld cquations
and boundary conditions. Considcring the admissibility of solutions of type (21), we obtain
as in the first section two problems of different order, the zero-order problem characterizing
the principal solution at time 1. The first-order problem takes the form:

oo, ;= poti; in Q, don,=0 on T,
;=0 on [,

de,; = (S, ,+du, )

. . . of oru [° oryl”
o6, = D.’,A:[ﬁau-éyrf,—y”(b;f: 50,,,,,4-5:{’55 5%)]
o0 2 |°
!]()f = é&; (50’,-;'*‘ 55;' (5(],
on | oh, |°
5g. = 30| — P M. ST
oq, =7 ( 5, do;;+ Y 5q,,)+6,:h,. (22)

Focussing on the initial behaviour of the perturbations, we now choose to study the solution
of (22) of the form:

SA(x,t) = 8A(x) exp (1A1), (23)

where again A is the initial rate of growth of the perturbations. Solution of (22) with the
proposed structure (23) requires the evolution of the perturbation to be rapid compared
with the variation of the coefficicnts of the first-order problem, so that they can be considered
nearly constant over some interval of time, If solutions of (22) are found for positive rate
A, then the perturbation can initially grow, otherwise stability is ensured. A loss of stability
indicates that the principal solution that remains the solution of a well-posed problem is
not physically observable. The limiting process of As tending to zero is now considered and
the first-order problem (22) for solutions of type (23) is rewritten as:
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86,,=pi*di, in Q. d6,;m,=0 on T,
da; =0 on [,
5éij = %(5‘;:‘,;4‘5&;.;)

i e [se _gs0 P 0raf’s. . Orul’ .
0d,; = Diju [58k1—5?r2,-— 7 (5;::— 06+ 6;: 44,
. LfépP.. éel ‘)
noj = 2(55; 86+ . 54,
._?0 énl® . ehl° .) »
5‘1: = 7 (‘é’&:‘]‘ 56,‘,"*‘ eqﬂ 5qﬂ +5‘yh’. (24)

Further reduction of eqns (24d)-(24f), corresponding to the first-order problem of the
constitutive equations, yields a relation of the type:

06;; = Diji(A) 6u, (25)

for some moduli D,,,(4) that are functions of 4. Note that a tractable expression for the
moduli D, is obtainable for simple functions y and ¢, but the resulting general expression
is not appropriate for further analytic development. Nevertheless, it is possible to analyse
the structure of relation (25) by simply examining eqns (24d)-(24f). Two limiting cases are
considered, as for the Shanley column analysis. Consider first the case of infinite rate of
growth 4. Owing to the presence of the term in 1/4, the contribution from the plasticity
part of the constitutive equations vanishes and the moduli D, (1 — o0) are nothing but the
clastic moduli. Now consider the other limiting case of vanishing ratc of growth (1 —0%),
which corresponds to the first possible instability. To remain within the domain of validity
of this analysis, one nceds to consider at the same time vanishing slow process j,. From
(18c), it is clear that this limit is equivalent to the replacement of the viscosity law by a
yicld criterion ¢(s.q) = 0. The moduli D,;,(4 - 0*) are thus obtained by considering a
riate-independent model that is obtained as the limit of inviscid flow of the rate-dependent
one. A similar conclusion was already reached in the rather different problem of shear-
band initiation in single crystals by Molinari (1988),

An important consequence of the presence of viscosity effects is that it eliminates
questions concerning the choice of loading or unloading conditions encountered in bifur-
cation analyses for rate-independent plasticity models. In the part of the domain Q where
plastic flow is taking place (¢ > 0), no instantaneous unloading is possible even for van-
ishing viscosity. In such a region and for the earliest instability defined by a vanishing rate
A, the moduli D, (4 — 0%) arc obtained from the rate-independent model pertaining as the
limit of inviscid plastic flow is approach. The analysis for the earliest instability thus yields
Hill's lincar comparison solid (Hill, 1958). Consequently, for plasticity models with an
associated flow rule, the instability threshold does indeed correspond to the first bifurcation
of the corresponding rate-independent model.

The next step in a classical lincar stability analysis is to assume some specific modes
of perturbation 64, guided by the physics of the problem. Instead of postulating these
functions we retain them as unknowns and rely on numerical methods to obtain solutions
for systems with a finite number of degrees of freedom. Accordingly, we now consider the
following weak form of the first-order problem:

L[&&,,_,(x. 1) — pA2Si,(x)]m dQ—J dé,n,n,dll = 0, (26)
r‘

for some test functions n, that satisfy the essential boundary conditions (22b). An integration
by parts and use of the constitutive relation (25) and compatibility eqn (24c) yields:
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L n.;Dxi(A)0d,, dQ+ A* qu,&ﬁ, dQ = 0. 27

Considering, for example, a finite-element formulation with the same interpolation for the
test functions and for the displacements, we obtain a discretized version of the first-order
problem, which in matrix notation reads:

[Z L B'D(4)B dQ¥ + A° '[; pN'N dﬂi]éﬁ,, =0. (28)
The summation extends over all elements and the strain operator B is based on the shape
functions present in N. For the nodal displacement perturbation d4, to have a non-trivial
solution, the condition:

det (K())+4'M) =0 29

must hold. Here K is a stiffness array based on the moduli D(4) and M is the mass array.

The linear stability analysis of the boundary value problem (17)-(20) has thus been
expressed as an eigenvalue analysis over a discretized domain. A zero eigenvalue in (29)
corresponds to a loss of stability of the solution and the corresponding eigenvector di, is
the instability mode in terms of the displacement ficld of the discretized system. Two
potential applications of this stability analysis can be forescen. It can first be used at a final
stage in a stability analysis to obtain approximate solutions in the absence of any analytic
results. Sccondly, owing to the simple formulation of the criterion (28), it can be incor-
porated as a standard option in finitc-clement programs to check the stability of the
computed solution.

4. APPLICATION TO THE PLANE STRAIN TENSION TEST

As an application of the previous section, we now study the stability of a rectangular
specimen consisting of a von Mises solid. The specimen is sustaining an homogeneous
planc strain deformation under tensile loading, which is called the fundamental mode of
deformation in this problem. It is known from experimental works (¢.g. Anand and Spitzig,
1980), from the bifurcation analysis of Hill and Hutchinson (1975) and from the numerical
simulations of Tvergaard et al. (1981) that the deformation could depart from the initial
homogeneous mode at some point of the loading. This deviation initiates the localization
of the deformation in shear bands, which is the failure mode of the specimen. The goal of
this numerical analysis is to detect the onset and to follow the development of this local-
ization process for the case of a rate-dependent solid.

A particular model is now selected from the general class of materials introduced in
(18). Its elastic response is chosen to be lincar with a Young's modulus and Poisson’s ratio
of 10* MPa and 0.3, respectively. The plastic flow potential  in (18b) is the von Mises
effective stress o, and the viscosity law (18c) is of a power-law type:

a,
5 — “_) —1| for 0.2 0a,(y), zero otherwise. 30
¥ 70[(60(7) ] o) (30)

In this relation, o, is a reference stress function of the effective plastic strain 7, and y, a
constant reference strain rate, set to 10~ s~ ' in the whole analysis. The rate sensitivity is
controlled by the strain-rate exponent m with the limit of inviscid flow obtained for infinitely
large values of this exponent. The hardening function g4(y) is expressed as the product of
a power law and an exponential function:
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ao(y) = (0, — c)(l + :'L)' exp (— l)+cr¢. @a3n
Y1 72

The exponential function in (31) models in a simple way the degradation of the flow stress
as plastic deformation accumulates. It is the key factor that renders possible the localization
of the deformation in shear bands in this problem. The introduction of ¢, ensures the
existence of a non-vanishing strength in the fully hardened state. Values of 10~ *and § x 10~*
are chosen for the two reference strains 7, and y, and the hardening exponent # is set to
3/4. The initial reference yield stress g, and the cut-off stress o, have values of | and 0.1
MPa. respectively. The material response is shown in Fig. 8 for two different values of the
strain rate exponent m and for a nominal strain rate of 4/3x 10735~ ",

The domain, which is first discretized with 10 x 15 four-node quadrilaterals. comprises
a quarter of the specimen for reasons of symmetry. As a consequence, we focus our attention
on instability modes that have the same geometrical properties. A discussion of the role of
asymmetric modes in the localization process can be found in the work of de Borst (1988,
1989). Despite the homogeneous character of the principal solution, a treatment of the
plasticity incompressibility constraints based on the B method (Hughes, 1980) is adopted.
This procedure eliminates the overly stiff response of the element when extensive plastic
flow occurs and is a prerequisite to capture the spacial gradient of the modes of instability.
Nevertheless, it should be noted that such treatment does not improve the poor performance
of isoparametric elements in localization analysis, as shown by Ortiz er al. (1987). Owing
to a continuous strain interpolation, isoparametric elements have been identified as inhi-
biting the growth of shear bands, unless the band orientations coincide with the elements’

P
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Fig. 8. Comparison of load-displacement curves between the perturbed solutions and the fun-
damental one. Two valucs of the rate exponent m are considered.
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800 Y. M. Leroy

boundaries. Careful mesh design is thus required to minimize the numerical band broad-
ening that could otherwise mask effects of the real physical mechanism responsible for
localization. An example of such a mesh design can be found in the work of Tvergaard et
al. (1981), and Tvergaard (1982), for crossed-triangle quadrilateral elements. A review of
finite-element methods for localization analysis is presented by Leroy et al. (1989). In this
paper, to improve the performance of the four-node quadrilateral, we choose a finite-
element scheme introduced by Ortiz et al. (1987). In their scheme, the conventional strain
interpolation is complemented by specialized modes of deformation that fully accommodate
shear banding at the local level. The resulting enhanced element was observed to reduce
the mesh sensitivity to the development of arbitrary oriented shear bands successfully, in
both two- and three-dimensional problems (Leroy and Ortiz, 1989, 1990). A generalization
to the finite deformation context was proposed by Nacar ez al. (1990). The formulation for
transient problems of this new finite-element method presented by Leroy and Ortiz (1990)
is adopted in this paper.

To complete the description of this numerical analysis, note that the displacement of
the top of the specimen is prescribed as a function of time. This function is initially
linear and thus corresponds to a constant nominal strain rate. As the localization of the
deformation takes place, the strain rate could increase drastically in the shear bands. To
control such an evolution, it is chosen to modify the loading function such that the strain
ratc at any point of the mesh be at most the initial nominal strain rate. The resulting mixed
finite-clement method has been used in various contexts by Riks (1979), Tvergaard et al.
(1981) and de Borst (1987), and is close to the one proposed by Chen and Schreyer (1990).

During the homogeneous straining of the specimen, two modes of instability are
expected, necking modes and shear bands. We now review results from the literature
concerning the initiation and the growth of such modes of instability in rate-dependent
solids. This information is essential to enable the validity of the numerical stability analysis
presented in this section to be assessed. The necking type of instability in infinite bars
creeping according to a powcer law has been investigated by several authors. Hutchinson
and Obrecht (1977) have shown that under quasi-static conditions, while perturbations of
all wavelengths are admissible, the modes with long wavelength had the fastest growth.
Hutchinson and Neale (1977) further pointed out the strong retarding effect on the devel-
opment of localization of even a low viscosity. The conclusions are different under dynamic
conditions. Inertia has a stabilizing effect on the growth of long-wavelength modes and
multiaxial effects have the sume influence on the shorter ones and result in an intermediate
critical wavelength (Fressengeas and Molinari, 1990). In this study, the specimen is of a
given aspect ratio and only discrete values of the continuous spectrum of wavelength are
admissible. Furthermore, because of the material hardening and by analogy to the rate-
independent case (Hill and Hutchinson, 1975), the long-wavelength mode is expected to be
the first admissible wave mode. The second type of instability to be expected is shear bands.
The only kinematic constraint for their development is that their orientation must be
compatible with the aspect ratio of the specimen. Here, by choosing an aspect ratio of 3/2,
shear bands are kinematically admissible modes of instability. Localization of the defor-
mation into shear bands is known to be delayed by rate effects (Molinari and Clifton, 1987).
Under dynamic conditions, inertia has a further stabilizing effect, while heat generation
has the opposite effect and accelerates the localization process (Molinari and Clifton, 1987).

The results concerning the linear stability analysis of the fundamental solution are now
presented. Attention is focussed here on perturbations having initially a vanishing rate of
growth and thus corresponding to the first instability. The strain rate exponent m is sct to
500, rendering the material only slightly rate-sensitive. The particular choice of plasticity
flow rule and viscosity law in this examplc results in a tangent operator in (25) having major
symmetry. The stiffness matrix K(4) in (28) is thus symmetric and is initially positive definite.
The lowest eigenvalue of the system (28) is obtained by the inverse iteration method
(Wilkinson, 1965). The vanishing of the lowest eigenvalue signals the onset of an unstable
solution. The first four modes of instability are shown in Figs 9a-9d. These figures present
the normalized displacement eigenvectors of system (28) associated with the first four zero
cigenvalues. The finite-element solutions to the instability modes are all of a wave type.
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Fig. 9. The first four instability eigenmodes in terms of the displacement field, for a von Mises solid
under plane strain tension.
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Following the chronological order of occurrence of thesc modes from Figs 9a-9d, one
observes the wavelength to decrease in both spatial directions. The loads at which these
instabilitics are detected are marked by points on the load-displacement curve of Fig. 8.
Note that the first instability is detected just beyond maximum load, an expected result
since we are considering perturbations with vanishing initial ratc of growth and thus
corresponding to a limit to a rate-independent response. In concluding this lincar stability
analysis, we comment on the abscnce of shear bands as initial instability modes. These
modes, as already stated, are kinematically admissible. Furthcrmore, the local criterion for
shear band initiation used by Leroy and Ortiz (1990} is found to be satisfied at every point
of the mesh at the critical time when the first mode of instability is detected. This discrepancy
could be due to the absence of a preferential site for the initiation of shear bands, and hence
they remain latent. This interpretation is confirmed by the analysis of de Borst (1989), who
observe shear-band mode of instabilities in a rate-independent solid only when imperfections
were introduced.

From the preceding linear stability analysis, we consider the principal solution to be
unstable as soon as a zero eigenvalue is detected. Nevertheless, as for the discrete case of
the Shanley column, monitoring the evolution of the perturbed solution is required in order
to assess whether the principal mode of deformation is asymptotically unstable.
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The evolution of the principal solution perturbed with the first eigenmode, Fig. 9a, is
now studied. This perturbation of the fundamental solution is achieved by prescribing the
first iteration of the next incremental displacement field to be a small fraction of the
eigenmode (order of magnitude 10~%). The corresponding load-displacement curve is
presented in Fig. 8. After a latency, a sudden drop in the bearing capacity of the specimen
is recorded. This change in the structural response is associated with the development of a
shear band oriented at about 45° to the horizontal axis. The thickness of this band rapidly
decreases and attains the minimum width set by the mesh. Furthermore, note that the load-
displacement curve in Fig. 8 exhibits a snap-back. It was necessary to reverse momentarily
the displacement at the boundary to stabilize the development of the localization process.
This result indicates that when specialized elements are used, hence in the absence of any
numerical stiffnesses, the viscosity of the constitutive model is not sufficient to stabilize the
catastrophic localization phenomenon. This shear-band failure mode can be defined as a
continuous increase in strain rate in a band of decreasing thickness. This observation also
indicates that localization should be interpreted as a dynamic process even in a kinematically
controlled experimental set-up. The deformed mesh where the displacement field is mag-
nified is presented in Fig. 10. Figure 11 shows the normals of the two directions along which
shear bands could develop in every element in which plastic flow is still taking place at the
end of the test. This information is used at the local level to define the extra modes of
deformation introduced in the finite-element method (Ortiz et al., 1987 ; Leroy and Ortiz,
1990). These two figures show a vartation in shear-band thickness of two elements to onc
clement from the specimen ceatre to its free boundary. The ability of the finite-clement
mcthod to accommodate localization up to the smallest mesh size can be judged from these
results,

The influence of the strain ratc exponent m, controlling the rate seasitivity of the solid,
is asscssed by repeating the same analysis for a higher value of m = 50, corresponding to
a more viscous response. The load -displacement curve for the principal solution of this
problem can be found in Fig. 8. On this curve, the point marks the first possible occurrence
of an instability that turns out to be a long wavelength mode analogous to the onc presented
in Fig. 9a. After the perturbation of the system, the solution reveals the development of
shear bands, which dominate the necking mode as in the previous test; see Figs 12 and 13.
This time, the latency before initiation of localization is increased, whereas the snap-back

Fig. 10. Deformed mesh showing a double shear band. Displacement ficld magnified by 30, rate
exponent m of 500.
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Fig. 11. The normals to the shear-band directions are represented in each element in which plastic
flow is still taking place at the end of the test. Only the upper quarter of the specimen is presented.
Rate exponent m of 500.

in the load -displacement curve is only marginal. This illustrates the strong retarding clfect
of viscosity on the growth of the localized deformation,

To estimate the sensitivity of the simulated localization process to the mesh size, the
same problem is repeated for a finer mesh of 20 x 30 elements and for m = 50. The results
are given in Figs 14 and 15. The initial mode of perturbation di, and the stability threshold
converge towards the continuum solution, as the mesh size is decreased. This improved
resolution has some bearing on the exact final distribution of the shear bands, which are

Fig. 12. Deformed mesh showing a double shear band. Displacement field magnified by 25, rate
exponent m of 50.
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Fig. 13. The normals to the shear band directions are represented in cach element in which plastic
flow s still taking place at the end of the test. Only the upper quarter of the specimen is presented.
Rate exponent m of 50.
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Fig. 14. Comparison of load-displacement curves betwcen the perturbed solution and the fun-
damental one, for two meshes of 10 x 15 elements and 20 x 30 elements. Rate cxponent m of 50.
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Fig. 15. Distribution of the plastic zone and orientation of the shear band at an intermediate stage
of the test for a mesh of 20 x 30 elements. Rate exponent m of 50. Perturbation based on the first
mode of Fig. 9.

now observed to be deviated from the specimen centre and to be reflected on the symmetry
boundarics. During the localization process, two parallel bands are first observed in each
quarter of the specimen. In time, the upper band is found to unload while shear localization
continues in the lower one. This process can be obscrved in Fig. 15, at an intermediate stage
of the localization process. At a later stage, the upper band has completely unloaded,
leaving only some traces in the deformation.

A final question dealt with here concerns the influence of the wavelength of the
perturbation on the final failure mode of the specimen. Once the principal solution is
perturbed by a long-wavelength mode, criterion (28) can still be used to assess the stability
of the new solution. A shorter-wavelength modc, analogous to the one presented in Fig,
9b, becomes rapidly available, Hence it was decided to conduct a second perturbation to
study the influence of this shorter wave mode. This analysis is considered for the finer mesh
size and a rate exponent of m = 50. The results are presented in Figs 16 and 17. Despite
the presence of the shorter wave mode, the long wave mode is observed to have the fastest
growth, thus resulting in the development of a single set of sheuar bands. This résult is in
agreement with the analysis of Hutchinson and Obrecht (1977). The only difference between
this test and the previous single perturbation test is the position of the bands on the
specimen, which are this time found to cross the centre ; see Fig. 17. The same influence of
shorter wave modes on the final location of the shear bands was also observed by Tvergaard
et al. (1981). In their work, the two perturbations were initially introduced as geometric
defects with different wavelength.

Compare now the band thickness at the end of the tests for m = 50 and for the two
different mesh sizes; sce Figs 17 and 13. It is apparent that the simulated bands always
have a thickness varying from two or three elements to a minimum of one element, regardless
of the mesh size. This seems to indicate that the physical problem of shear banding in rate-
dependent solids is one with no stationary solutions, and that the numerical solutions are
valid up to a time when the narrowing band has attained the minimum thickness defined
by the mesh.

5. CONCLUSION

The introduction of deformation-rate sensitivity ensures the existence of a unique
solution to boundary value problems when characteristic stress levels remain small com-
pared with the elastic moduli (Mandel, 1971). Rate sensitivity is proposed to explain the
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Fig. 16. Deformed mesh showing a single shear band for a mesh of 20 x 30 elements. Displacement
ficld magniftied by 40. rate exponent m of 50. Two perturbations are considered, corresponding to
the two first eigenmodes of Fig. 9.

behaviour of materials such as metals under high striin rates (Marchand and Duffy, 1988).
By considering the limit of inviscid flow in a rate-dependent model, a rate-independent
behaviour is obtained that is also appropriate to describe a large class of materials such as
rocks and granular materials, under a varicty of loading conditions. Nevertheless, this
limiting process does not suppress the essential feature of the rate-dependent formulation,
which is to guarantec the well-posedness of the problem, paramount in any localization
analysis.

Fig. 17. Distribution of the plasticity domain and orientation of the shear band at the end of the
test with a rate exponent m of 50 and a mesh of 20 x 30 ciements. Perturbations correspond to the
two first eigenmodes of Fig. 9. Only the upper quarter of the specimen is presented.
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Uniqueness in the solution of a given boundary Value problem does not imply its
stability under small perturbations. Whereas a solution regardless of its stability can be
analysed either analytically or by choosing the appropriate numerical scheme, its physical
existence is conditional to its stability. This concept was first illustrated here in the case of
the Shanley column. A loss of uniqueness in the principal solution of an untilted column
occurs at the Euler load under quasi-static conditions and the stability threshold is found
to coincide with a critical load defined by the tangent modulus obtained as the limit of
inviscid plasticity is approached. For every load beyond this threshold a potential per-
turbation corresponds with a positive rate of growth, which leads to the buckling of the
column. The latency between the instability threshold and the real occurrence of buckling
is found to vanish for decreasing viscosity. Unlike the results of creep buckling analyses
(Rabotnov and Shesterikov, 1957 ; Hoff. 1958). linear stability predictions can thus be very
representative of the actual buckling load of a structure, as the limit of inviscid plastic flow
is approached.

For solids under multiaxial conditions. a similar linear stability analysis of the Shanley
column discrete case can be considered, and a weak formulation of the stability criterion
has been presented. For systems with finite degrees of freedom typically obtained by
discretization of the continuum, a numerical solution can be obtained to both the instability
threshold and the corresponding eigenmode. It is necessary to monitor the evolution of the
perturbed solution to confirm the prediction of the linear stability analysis. Furthermore,
this exercise can reveal the development of localization phenomena which are usually
responsible for the final failure. This concept has been applied here to the finite-element
simulation of a von Mises rectangular block under plane strain tensile loading. Whereas
the initial modes of instability were found to be of a wavy type, the final failure mechanism
was in shear banding. The influecnce of both the rate sensitivity and the wavelength of the
mode of perturbation on the development of shear bands has been considered. The presence
of rate effects delayed the development of shear bands but could not stabilize the cata-
strophic localization phenomenon. The introduction of short-wavelength perturbations
alfected the final position of the shear bands on the specimen. Finally, a convergence
analysis confirmed the dependence of the simulated band thickness on the smallest mesh
size and scems to indicate the non-cxistence of a stationary solution for the class of rate-
dependent solids considered here.
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